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ON EVOLUTIONARY NOTIONS OF A PARTICLE IN A INVITATIONAL FIELD* 

A.D. MOROZOV 

Non-conservative, time-periodic perturbations of the Kepler problem are 
studied. A phase-averaged system is given , which determines the evolution 
in the system when there are no resonance modes. The qualitative bchaviour 
of the solutions in the resonance zones is studied. Depending on the 
structure of the behaviour of the solutions, the resonances are divided 
into traversable, partially traversable and non-traversable. The 
boundedness ofthesetofpartiallytraversable resonances is established, 
.and this, in many cases, makes it possible to determine evolution in a 
system with resonance modes. An example is used to illustrate the method. 
It is shown that a constant component in the periodic function of the 
perturbation causes the evolutionary process to become non-unidirectional. 

1. Formulation of the problem. Consider the motion of a "particle" in a gravity 
field in a medium whose resistances R depend periodically on time. If r, cp are polar coordinates 
in the orbital plane, then the normal and tangential component of the resistance force is equal 
to -mRr’/v, -mRq’rfv respectively. Here m is the mass of the particle, R is the resistance 
per unit mass of the particle and v is the orbital velocity /I/. We write R = &g(r,v, &)where 
s isasmallpositivePar~eter,thefunctiongisatleastcontinuousintandperiodicin Qt with 
period 2n, Q is the perturbation frequency. We also assume that g is analytic in r and " (r) 
in the region r>r_> 0. The equations of motion of the particle can be written in the form 

r" - aW + Mlr’ = - egr’iv, a’ = - eaglv (1.0 
where o, = rav’ is the kinetic moment of the particle, M= G(m,+ m), m, is the mass of the 
central body and G is the gravitational constant. 

A characteristic feature of system (1.1) is the resonances, i.e. the integer-type 
relations connecting the perturbation frequency D with the characteristic frequency (with mean 
angular motion w): 

po=qQ (1.X) 

*Pz-ikl.Matem.tfekhan.,50,3,360-368,1986 
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If we consider two (or more) mutually non-interacting particles with frequencies CO, and 

03, then the resonance relations of the form (1.2) for these particles will imply that the 
frequencies 0% and o2 are commensurable. 

Such type of commensurability is well-known in the case of the solar planetary system 

and of artificial satellite systems /2, 3/. One of the reasons for this phenomenon is the 
action of forces of resistance of the medium and tidal forces. We also note that a major part 
is played by the forces of resistance when a particle moves through the atmosphere. 

We consider the model (1.1) in order to study the effect of the non-conservative forces 
of resistance of the medium on the motion of the particle, and before anything else we find 
out the structure of the resonance zones and investigate the possibility that the particle is 
arrested at the resonance. The study of system (1.1) is of some mathematical interest. A 
similar system with 3/2 degrees of freedom was discussed in f4, 5/. System (1.1) represents, 
essentially, a system with two degrees of freedom, therefore we encounter new problems in its 
investigation. 

When E = 0, system (1.1) admits of first integrals 

r'2/2 + &/(2P) - MIT = h, cc = const (1.3) 

The values h E (- I@/(~cz*)~ 01, h = - Me/(2az), and h= 0 correspond to elliptic, circular 
and parabolic orbits respectively. Using (1.3), we obtain the relations 

r = u (1 - e Cos E), 6 = ot = 5 - esin g 

defining the sdlution of the system. Here a is the major semi-axis of the Keplerian orbit, 
e is its eccentricity, B is themeananomaly and 5 is the eccentric anomaly. We replace the 

variables (r, r’) in the region corresponding to the values hE I--Ma~J(2az), 0), a>O, by the 

action I and angle 0 variables 

f(h)=&+ - r*dr=tiG -a, O,<I<m 

In the new variables the unperturbed motion will be written in the form I' = 0,8'= o(f, 
a), a’ = 0 , and we obtain the following relations for the parameters of the elliptic orbit: 

We note that the condition a = 0, I#0 leads to e== 1. However, in this case the first 

equation of (1.1) degenerates and the motion takes place not along the parabolic trajectory, 
but along the trajectory for which r-+0 as t-t=+ (an asymptotic fall). 

Further, acCoxding to /l/ we have 

(1.5) 

Now let e f 0. In the new variables the system (1.1) will be written in the form 

I' = --eg (r, v, $) r’re’lv + (r,‘r< - re’r,“) d = SF1 0.6) 
a’ =; - eag (r, v, Ip)iv 5 eFs 
8’ = 0 + =?Sg (r, v, $) iFl’/V + (Tz’S-.Z’~ - Fa’rz”) d-= 0 i- SF, 

9’ = $2; (Pk = Pk (I, 8, a, 4% k = iv& 3) 

The system (1.6) is defined in G X S X S, where G = {(I,a):O<,<<w, 7/K<a<m). 
Let us consider, together with (1.61, the phase-averaged system (PAS) defined in C 

I = eB, (I, a), a’ = 88, (I, a) (1.7) 

We assume that system (1.7) has in G at most a finite set of equilibrium states. ff 
there were no resonance modes in system (1.6), then (1.7) would describe the evolution in the 
initial system. Using the last relation of (1.4), we will rewrite the condition of resonance 

(1.2) in the form 1 f a = (pMB/(&))'/*. The condition singles out in the plane (1, Co) the lines 

which will be called resonance lines. As we know /6/, not every point on the reference line 

in (1.61 has a periodic solution with the corresponding period. 
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Let us denote by Mm the set of resonance points (I,, a&, for which such solutions 
exist. We show in this paper, that when there is a non-conservative perturbation (Bl,a+O), 

the set MPQ will be, at most, finite. In this case the evolution in the system (1.6) will be 

describedbymotionalongthetrajectoriesofPAS,untiltherepresentativepoint (1(&a(t)) arrives 
inthe neighbourhoodof the resonance point (I,,c&E M,. We further carry out a qualitative 
study of the behaviour of the solutions of (1.6) in the neighbourhood of the 
resonance points. We will show that the representative point is either arrested at the given 
resonance, or it passes through it and continues to move along the trajectory of PAS. If 
the representative point is not stopped at any resonance, then it tends, as t+ 00, to the 
attraction set of PAS, or leaves the region G altogether. Here, as in /4/, the resonances 
can be divided into traversable , partially traversable and non-traversable. We will also 
solve the problem of the stability of the resonance modes. The case g = v [6 - (b + sin$)/rl,. 
where 6, b are parameters, is used to illustrate the investigation. 

The case g=v--f(rp) was studied in /7/, but in fact the work was confined to the case 

f=O in which the particle falls asymptotically onto a neutral body (as t-m). 
The averaged system given in /7/ for the non-autonomous case does not describe the 

structure of the resonance zone, nor does it solve the problem of the stability of the 
resonance modes. 

2. Auxilliary transformations of the initial system in the resonance case. 
Carrying out in (1.6) the substitution 

1 =I, + p2,, a = %s- pz,, 0 = @+plllp, p = 1/i- 

expanding the right-hand sides of the resulting system in powers of p and separating the 
terms independent of $ ("autonomous terms"), we arrive at the system (for greater detail see 
/8/; here we merely note that nk = zk + O(p),@ = v + O(p*)) 

where 

Ak=Ak(V;Ipq,~)i Pkj=Pkj(V;Ipp,apP) 

b, = -3M-'1~ (qQ/p)“a, ba = 6M"il (qQ/p)‘la 

(2.2) 

The functions Sk (v, ur, up, t; p) are analytic in +, uar p 
and 2np/(qQ)-periodic in a, 

for sufficiently small p, analytic 
continuous and 2np@-periodic in t. Carrying out the substitution 

uk = tit- NQ/(&) (k = 1,2) in (2.1) and neglecting terms of order O(p8), we obtain the system 
qlh’ = @a b’) + Pa [(pkl (u) + Q,,' (u)12) q1 + (&a (u) + (2.3) 

Q.' (744 q,l, k = 1, 2 
v' = @l(rl~ + rla) + p"b, (q: + q:) 

In contrast to system (1.7) (PAS), we will call system (2.3) the averaged near the 
resonance system (PAS). 

In what follows, we will find it convenient to transform system (2.3) with help of the 
linear transformation y1 = q1 + qo,ya = q,, to the form 

0' = @,y, + P'QI, Yl’ = P (Al + Aa) + P’Qat “I’r’ = PAa + 
PQ* 

QI = bs [(YI - ya)* + ya’lg QI = V'u + Pm + 0,') ~1 + 
Paa - Pu + Pla - PSI) ~a, Qa = (Pat + 
Qv'4 Yl + (paa - pad YI 

(2.4) 

3. Investigation of RAS. First we consider the truncated system 

V’ = PblYl, Y1' = P (AI (~1 + Aa (v)), Yn' = P Aa (~1 

Differentiating the first equation in t, we arrive at the phase equation 
. . 
v - pa& (A, (v) + Aa (v)) = 0 

(3.1) 

(3.2) 
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If the system 

Ak (u, I, a) = 0, k = I, 2, I + a = [M”/(qB/p)]‘a (3.3) 

has a simple root u~,I~~,cL,, then equilibrium states with u = u0 exist for system (3.1) 
for these values of I and CL. The equilibrium states are not isolated (they fill the straight 
line y1 = 0, u = uo). Note that the phase space of system (3.1) is represented by the direct 
product D X R’, where D = R1 x S is the phase space of system (3.2). Therefore in order 
to construct the phase pattern of (3.1) it is sufficient to construct the phase pattern of 
(3.2). 

It can be shown that the smallest period of the function Ak(u) in u is equal to 2nlp 
(see (3.7) below). Therefore, Eq.(3.2) is the pendulum equation and admits of the first 
integral 

~"12 - $b,V (u) = II, V = 5 (A, (v) + A, (v)) du (3.4) 

which determines the phase curves. The simple equilibrium state (rl = 0,~ = u,,) of Eq.(3.2) 
is of centre-type, provided that b, (A,‘(u,) +A,' (u,))< 0, and of saddle-type if b, (AI’ f 
A,’ W) > 0. By virtue of (2.2) b,< 0 and hence of A,‘(u,)+A,‘(u,)>O is the condition for 
the centre, and A,‘(u,) +A’p(u,)(O for the saddle. Since Al’ (u) + A,‘(u), the functions 
A,(u) +A,(u) take different signs in the neighbourhood zeros andthe simple equilibrium states 
of the centre and saddle type alternate. 

Let us write the function Ak (uj in the form 

Al, (li; I,, app) = Ah. (u; I,,, a,) + & (r,, a,) (3.5) 

where Bk are the values of the functions Ak(u) averaged over a period. If Bk (Ipqr aw) = 0, 
k = .I, 2, then the point (I,, ugq) represents the equilibrium state of PAS. The possible 
phase pattern of (3.2) is shown for this case in Fig.la. We shall call such resonances non- 

traversable. Fig.lb shows the phase pattern for (3.2) in the case when max, 1 Al, i-A,, I> 
IB, +B, 1 >O. We shall call such resonances partially traversable. When (3.2) has no 
equilibrium states, the initial system has no corresponding resonances modes (the converse 
is generally not true). The phase pattern of (3.2) for this case is shown in Fig.lc, and we 
shall call such resonances traversable (for more accurate definition see /S/j. 

a I"' ,b I c I 

Fig.1 

We note that the truncated system (3.1) does not provide a solution to the problem of 
the stability of resonance modes of the system (1.6) (in the class of non-conservative 
systems (3.1) is not structurally stable). This makes it necessary to investigate system (2.4). 

Let G,, = {(I, a): (I - !,Ja + (a - cc,)* < p), where (I,, a,,) are the equilibrium states of 

PAS for which I,,> 0, a,> 1/x_>O, p is a sufficiently small, fixed positive number. We 
denote by c,, a bounded region in the plane (!,a) obtained from G by removing the neighbourhoods 
G np and "infinities" I\< I+< 00, a< a+< m. 

Assertion 1. System (2.4) has equilibrium states for (I,,u,)E G, for not more than 
a finite set @, q}. 

To prove this assertion it is sufficient to show that system (3.2) has no equilibrium 
states when p and g are sufficiently large. Expanding the functions F, in dual Fourier 
series m 

F#V,%%*)- 2 Fk,,,# (',@axP [i(me+@)l 
nl.*=--00 

we obtain from (2.2) 

The integral in (3.6) is different from zero when m= np,r= --ng, n is an integer, there- 
fore we have 

Ak(v;Z m, am) = 2 F,, np, _w (I,, aw) ew (iw) 
n=-.n 

(3.7) 
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The following expansions /l/ hold for the unperturbed solution r (9): 

(3.9) 

where Js(mc) is a Bessel function of order s. The following estimate /9/ holds for large s: 

$8 (se) - {exp 1s (th p - p)j (Zxrth pj-I'*, ch p = c-l> 1 (3.9) 
Further, the expansion 

g = 2 g,(r,v)exp(W,) 
n==?-oz 

also holds. Then, from (1.6), (3.81, (3 .Q) and the analyticity of g in r and v in the region 
in question, and from the continuity in t, we obtain the estimate 

C (c)> 0 for c < 1, o. = MW, u, = 0 (I*, a,), (I,, a.) E G,. 

This, together with the relations F k,O,o=&(k= i,Z?), yields the required assertion. 

Notes. lo. If o,= 08, then we have I-O,C-.0 as (P/q)-(We,), and therefore r--1 r, = 
as/M, re' - 0. Then B,-0 and B,fo, if 

2n 

S i? h,v (h)r Ip)+ d$ f 0 
0 

otherwise the PAS has an infinite set of equilibrium states which contradicts the assumption 
made above. If on the other hand the equation 

7 g obr v @J),'#') v-Id+ =0 
0 

has isolated roots cc= aj, then I=0 represents the coordinate of the equilibrium state of 
PAS, i.e. (1 = 0, aJ) = &. 

2O. Assertion 1 enables us-to study system (2.4) in the neighbourhood of individual 
resonance points (Ipp,ap4) with the global investigation in G,, and thus solve the problem 
of evolution in system (1.6). 

Let us consider the problem of the stability of the equilibrium states of system (2.4). 
If u=ug is the coordinate of the equilibrium state of the truncated system (3.1), then 
system (2.4) has an isolated equilibrium state (u = v,,, Q ='Q = 0) provided that A,' (~3 -I- 
&' (v,,) Z 0 . The characteristic equation for this equilibrium state has the form 

--K -i- ~%~h*+ $ (a1 + O($))k -I- $Q, = 0 (3.10) 
a4 = b, IA,’ (P,, - J’PP) + A,’ (PI, - f’,,)L. 
a1 = b, (A1’ + As’) Iwv,. aa = fP1, + Pm + as’) iv=% 

According to /6/ we have the following asymptotic expression for the roots of (3.10): 

al,, = f I/Y& - (a. - a& (2a,)-‘p*, h, = -Q&-‘p~ 

From this it follows, that whentheconditions 

a,< 0, a,<% %<adsl (3.11) 

hold, the equilibrium state (v,, 0.0) of system (2.4) is stable (a generalized node). Thus, 
for-the centre-$ype equilibrium state of system (3.2) under the condition a,<O, a, < adal 
we have the corresponding stable equilibrium state of the,PAS. If even a single condition of 
(3.11) is violated, then the equilibrium state will not be asymptotically stable (when the 
inequality is strict, the state is unstable). 

Let us introduce the function 

defining the divergence of the vector field of PAS. Clearly, u (vO) = us. Using (2.2) and the 
fact that the Jacobian of the transformation (r,r')--+.(I,f)) is equal to unity, we obtain 

PW 
cr(+=-$- s gv_'d* (3.12) 

0 
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From (3.12), (2.2), (l.G) it follows that 

(J (0) := 2A, (U) m-1 (3.13) 

and this proves 

Assertion 2. If system (2.4) has a single equilibrium state (% 0, O), then (5 (t)) is 
a sign-alternating function and (T (Uo) = a* = 0. 

In order to establish the topology of PAS in the case of sign-alternating IJ (9 I we pass, 
in the truncated system (3.1) in the region D, x RI, where DO is the area of the plane (v, u') 
filled with the closed phase curves of (3.2), from the variables (v,y1,y2) to the variables 

(I, BT Vn), where J is the action and p the angle. When Sk= O(k= 1,Z) then the action J-angle 

B variables can be used not only in the region of oscillatory motions of (3.2), but also 
in the region of rotational motions. 

In the new variables system (2.4) takes the form (a prime denotes a derivative with 
respect to z= pt) 

J' = M,, B' = up V) + CL& Y; = -4, (u (J> B)) + ~1% (3.14) 
up = dSldJ, R, = QsuB' - QIYI~', R, = -Qnq' + QIYI.,' 
R,=Q, (Rk=Rk(J,B,qa), k=i,2,3) 

Carrying out the substitution 

u=1;1-o~'S~4,(u(I,B))dS 

we transform system (3.14) to the form 

I' = pR,, y' = p [R, - A, (u(J, B)) Raop-ll 
B'= up+ PR, 

The right-hand sides of system (3.15) are &c-periodic in 

$I we arrive at the system 

13.15) 

0. Averaging (3.15) over 

(3.16) 

If system (3.16) has a simple, stable equilibrium state (J,,T~) in the domain of admissible 
values of J,v, then, as we know (e.g. /lo/), we have in PAS the corresponding stable limit 
cycle provided that J,#,O, or a stable equilibrium state if Y,=O. If on the other hand 
(3.16) has a stable coarse limit cylce of frequency I, then we have in PAS a corresponding 
stable, two-dimensional invariant torus TPwhich dividesthephase space of PAS. The solutions 
on T, are two-frequency solutions with the frequencies op and 1. The solution on the cycle, 
as well as solutions on the torus, all have long periods, otherwise r= fit. We find that 
stable periodic solutions in (1.6) correspond to simple, stable equilibrium states of RAS, 
two-dimensional stable invariant tori correspond to the stable goarse limit cycles, and the 
stable three-dimensional tori to the stable two-dimensional tori. 

4. Example. 
lo. 

Let us put ~=~(6-_(~)/& where 6 is a parameter. 
Let f = sin*. Then according to (1.6) we have 

sin* 
F,=- b_ r ( -)r~*-+c(*_yy+l), (4.1) 

First we calculate the right-hand sides of PAS. Substituting (4.1) into the last relation 
of (1.7) we obtain 

B,= -61, B,= -_6a (4.2) 
In this case the system (1.7) (PAS) will have a unique equilibrium state at the origin 

of coordinate of the subcritical node type (stable at 6>0). Therefore, when there are no 
resonances, the 

Let us now 
accordance with 

particle falls asymptotically when 6>0 on to the neutral body. 
compute the right-hand sides of the truncated system (3.1). We have, in 
(2.2), 

A, = RI +A,,(& A, = R, + As. (4 (4.3) 
ZQ 

1 
‘%*= G S[ 

sin* 
r'rg'r + 

cl 
VIP 

a 
s 

sin * 
Aw=~np rd9 

0 
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From (3.8) we obtain 

re’= aenjl (J,l be) - J,+r(ne))sinnO 

Substituting (4.4) and the second equation of (3.8) into (4.3) and taking into account 
the fact that r'= ore', we obtain 

AL* = A,, sin pv, Am = A,, sin pu (4.5) 

A1,=~[(Jp,,,(~)-Jp,a+~(~))8- 
2Jp (P4 (I,_, (P4 - J,, (Pev] - gi- ( Jp (~4 i Jpa W + 

Jtla T +-f-J,(pe), P- even q=1 
( J) 

A,, = - + J, (~4 (J,_, (~4 - J,+l (PC))'- 
3as 
2 (Zv (P4 + JpS (PC)) f + J, (PC)* P - odd, q=i 

Asp = -au-‘J, (PC), q = 1 

When q>l we have A,,= 0, A,P= 0. 

To solve the problem of the existence of equilibrium states of system (3.1), and hence 
of (2.4), we consider system (3.3). To be specific we will assume that p is odd. Eliminating 
sin pv from the equation A,(u)= 0, with help of the equation A,=O, we arrive at the equation 

es VP-~ (PC) - J~+I (PW + 6 (3 - 2) (i + Jd (PC)) - 2 = 0 (4.6) 

Thus system (2.4) has equilibrium states for those odd p for which the transcendental 
Eq.(4.6) has a simple root a=+~[O,i), such that 

I ~$,‘/WJ,) I < 1; $ = WWP)~” = I + a (4.7) 

Using the expansion 

J,,(z)=(+~~ (--? (;)“” 
k!(n+k)l 

we can show that Eq.(4.6) has no roots with sufficiently small values of cg (a comet-shaped 
particle). For example, for p=i we have ~~==0,77. 

When condition (4.7) holds, the equations Sk+ Ak+(v)= O(k= 1,2) have two real roots 
within the period xlp<v<nlp. 

Let us denote by V, the root for which ~0s pvo<O. With ep known, we use the second 
formula of (1.4) to find a=~+~= dpm. Finally, from the relation I+a= d, we obtain 
I=Im=a*--p In this manner we determine the resonance point (Zpn a,,),inwhosefineighbour- 
hoodsystem (1.6)hasresonance modes.Inother words, we have determined the parameters of the 
elliptic generating phase curve of the equation r" - aa/9 + M/P = 0. 

In the course of solving the problem of the stability of the equilibrium state (%. 0, 0) 
of system (2.4), we must determine the signs of the quantities =,,a, (according to assertion 
2 Cl, = 0). This can be done using the formulas for oO,al in (3.10), (4.5), (4.7), (2.2). Thus 
for small p we have al<0 when cosp~,<O. Further, it can be shown that 0~=&9, where E= E(p) 

is independent of 8. Therefore, when B#O, we can attain the condition of stability a,<0 
by choosing the sign of the parameter 8. The calculation of E is cumbersome and is therefore 
omitted. 

20 . Let us consider the case f= b+sin$, where b is a constant term. In this case the 
PAS has the form 

Z' = s I-6Z + bM (Z/la (I + a)] + i/a - a/(Z + a)~] 
a' = e [--8a + bM @/(I + a)*)] 

(4.5) 

Clearly, the functions A,, (u), A,. (0) remain as before (see (4.5)). System (4.8) in the 
region G has a unique unstable equilibrium state (Z=O,a=Z/m) of the saddle type. A 
circular orbit with r,= bl6 corresponds to this state of equilibrium. 

Fig.2 

Fig.2 shows a possible phase pattern of system (4.8) with 
8 > 0, b > 0. The appearance of a saddle-type equilibrium state 
leads to the fact that the evolution has a different character 
on each side of the unstable separatrix S-. If the particle 
was situated at the initial instant at the point corresponding 
to point A (Fig.2), then its further motion, provided that 
there are no resonance modes, follows that corresponding phase 
curve in the direction of the arrow. Moreover, decreasing 
the value of Q (at constant I) leads, in accordance with (1.4), 
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to reduction in the size of the orbit, while increasing the value of I (with a kept constant) 
leads to an increase in the eccentricity e. The evolution is completedwhen the article arrives 
at the dashed line (Fig.2) and then falls onto the neutral body. If on the other hand at the 
initial instant the particle has parameters corresponding to the point B (i.e. it lies in 
the orbit situated nearer to the central body), then the orbit will increase (a will increase) 
up to some instant corresponding to point C in Fig.2. From then on the evolution will be the 
same as in the previous case. 

Thus when the function If*) has a constant term, we have an interesting effect from the 
point of view of the evolution of the motion. The evolutionary process may develop in more 
than one direction. 
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